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INVESTIGATIONS REGARDING THE DRAG CHARACTERISTICS OF

FLOW-DISTURBING BODIES WHICH ARE ARRANGED IN LINE AND

ATTACHED TO THE WALL. _20"

M. Balkowski and H. Schollmeyer

I. Introduction and Problem Formulation

The mutual influencing of perturbation bodies arranged in

a row in a flow field is becoming more and more of practical

importance because of its drag behavior and the corresponding

momentum loss in the flow. Many questions of construction

air dynamics as well as problems in the design of flow systems

for chemical processes, high performance heat exchangers and

filters involve these detailed investigations. Up to the

present only a few papers are known which treat the influence

of perturbing bodies attached _o the wall which penetrate beyond

the incident _ boundary layer [i, 2, 3].

In the following we will discuss the flow behavior of iden-

tical rectangular perturbation bodies which are attached to

a base surface on the wall in a rectangular enclosed flow channel

(Figure i). Up to four perturbation bodies with the same separa-

tion were installed. The distance between them was varied between

i to 24 perturbation body heights, and the Mach number of the

incident air was varied between 0.i and 0.5.

If. Description of the Flow Behavior

The investigative perturbation bodies make the flow separate

along the sharp edge which faces the flow. In the separation sur-

face which is then created there are large velocity gradients and

therefore large shear forces which lead to the formation of a strong

turbulent mixing zone. The turbulence is for the most part in-

homogeneous and isotropic and has an intermittent character espec-

*Numbers in margins indicate foreign pagination.
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Figure i. Cross-section (dimensions in mm). /20
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Figure 2. Schlieren ph_t0graph of the flow,.

ially at the edge, so that measurements are especially difficult

in this region. The Schlieren photographs for two different dis-

tances between the first and the second perturbation body (Figure

2) give an impression about the velocity fluctuations which pre-

vail in this case, The drag of the first perturbatlon body depend_

almost exclusively on the incident flow conditions. The drag of

the following perturbation body passes through two characteristic

s$.ages as the separation is increased: if the perturbation body is

in the region of the dead wa_er region (Figure 3 above), then the

ii
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drag is negative. The force on the front side and the back side

is determined essentially by the corresponding static pressure of

the flow above the mixing zone. As the separation is increased

the perturbation body becomes more and more under the influence of

the mixing zone (Figure 37 bottom). The drag becomes positive

and increases further with increasing incident flow speed. /21

III. Test Configuration and Measurement Methods

i. Test Configuration

The measurements were performed in a 450 cm long "Suction

Channel" with a rectangular cross section (H _ 200 mm, b = i00 ram)

(Figure i). The walls consisted of "high impact poly_inylchloride"

(i_o_u_litz_ )7 a plastic 2cm thick. A convergent-divergent dif-

fusor which comes after these walls provideda capability for adjust-

ment and for holding the velocity constant. The height and position

of the perturbation bodies was determined from _he following con-

sideration:

a) The first perturbing body is to clearly penetrate above

the boundary layer w,hich is between 4 to 7 mm thick.

b) The aperture ratio (H--t_IH for an incident Mach-number

of Ma < 01 allows one to expect a constant flux coef-

ficient over the Re number formed with the free opening

dimension i_Ihl . According to DIN 1952 [5], this

leads _o hH _ 0_ . When the channel height H is

enlarged, the contracti®n and shape of the flow remain

independent of the _e number _eferred to the incident

flow speed.

2. Pressure measurement

The rest pressure was measured using a _itot tube, and the

static pressure was measured using a large n_mber of pressure

taps Cdiameter I mm) in the side walls,of the channel.



A measurement point switch (Scanivalve) was used to acquire and

print out the values at 48 measurement points, using a transducer

(CEC) and an associated measurement and control facility. This

occurred during the blowing time of the channel of about 20 sec-

onds.

We only use measurements in the non-turbulent flow region

above the mixing zone for the evaluation, because detailed inves-

tigations [4] show that the strong velocity fluctuations in the

perturbing body wake do not allow one to obtain a reliable eval-

uation of the flow field using pressure measurements.

3. Force measurement

We also have to be skeptical about determining the pertur-

bation drag with pressure distribution measurements in experiments,

because the influence of the turbulent fluctuations on the meas-

ured pressure can only be determined in an uncertain way. Tests/22

along these lines were not successful. Only measurements of the

force Kn applied to the perturbing body in the main flow direction

(x) with an installed strain measurement balance, which was dyn-

amically matched to the fluctuating loads, led to the reproducible

results.

Figure a shows the force applied to the perturbing body by

the flow as a function of time. As to be expected, the first

Mach numbers which were used for all cases show a uniform load

as was expected (top photograph). A second perturbing body in

the dead water region shows the greatest load fluctuations for a

separation ratio of _,_ 4, and the average value is negative

(central figure). With increasing distance the fluctuations

decay agaJ:n and the average value again becomes positive (lower

figure). When comparing the oscillograms, one has to consider

the different input sensiti_iti_es of the measurement amplifiers.

The temperature-compensated strain balance was switched as



I

] J
T

Figure 5. Drag coefficient of the last perturbation in each
case for different groups at,_1,.....0,3,5

the load branch of a Wheatstone full bridge. It allows one to

accurately and simply determine the forces in the x-direction

with a high resolution in time (eigen frequency _ _()0_qz ) and

_he interference is small (i(_,i_,<0.0_. ), i.e., a force KY

perpendicular to the main flow direction leads to a measurement

error in the x-direction cf less than 2% of this force.

Because of the strong fluctuations the data were acquired

with a true integrating analog-digital measurement system. The

force measured in _his way was made dimensionless using _he

area projected in the flow direction F_,,.:l)h and the stagnat-

ion pressure . _,_2 .

4. Measurement of the Momentum Loss

The momentum loss was determined by measuring pressure and

velocity ahead of (i) and far behind (2)the perturbing bodies.

It is _he result of the drag of the bodies and the friction force

which corresponds to the friction losses at the channel wall,as

well as on the perturbing body configuration. This friction force

can also not be determined. However the friction force of the

empty channel can be determined as

K.,.,, I.--F_I'[, I,:,L-(_/,;L'I'_""; '_L:

The energy loss with the i.nstalled perturbing bodies is the result

of the drag of all of the perturbing bodies Kst and the friction



resistance at the channel walls K.,,_,,_f., \_<,:,,',_ in relation

to the empty test section. The momentum theorem is therefore:

a'sd K.,.,,_,?Z_K,_._b_=FK[l/,,--p_;_,- _',";M"'-"; Ml

If the measured values p and w are referred to the same throughput

_,_,, ,,,w,,,, then the drag which is equivalent to the total

momentum is

and the corresponding loss coefficient is

• '_/_'.--"_M+ ".Zba..-__L__J_.

Measurements not reproduced here show that the change in the

wall friction force is of the same order as the perturbation body

drag.

Since the wall friction force cannot be determined or ignored

it is not possible to determine the force applied to _he perturbing

bodies using measurement of the momentum loss in the presen_ case.

IV. Results

I. Drag Behavior

The drag variation of the _ndividual perturbing bodies in

a group of several perturbing bodies arranged in a row behind one

another allows one to establish 3 influencing ,variables; the

position i(i l, II _I_.... n_ • the separation ratio (x/h_. and the

incident Mach number Ma:

Figure 5 show._ _he drag coefficient of the last perturbing body

of a group of 2, 3 and 4 for _ o,35 . _±th increasing posi-

tion numbe_ the characteristic feature, negative coefficien_ in

7



the dead water reKion, increase for increasing separation is

maintained. The drag as a distinct minimum for all positions

at x_7 :I. With increasing separation the perturbing

body comes more and more under the influence of the high inci-

dent flow speed, and its drag asymptotically approaches the

drag which it would have if it were the first body, but for dif-

ferent flow conditions.

Changes in the flow field and the drag become smaller with

increasing position number, so that an increase in the number of

disturbing bodies for technically feasible separations Ix,,h_ 51

leads to a decreasing change in the total momentum flux as Nau-

mann [i- already established. An explanation for this was given

by Kauder [6] who observed that, because of the transporz of

kinetic energy perpendicular _o the flow. direction caused by

the large turbulence in the perturbing body wake_ already after

a few perturbing bodies a turbulent velocity profile occurs in

the test section, which then no longer changes 'downsZream.

The non-turbulent flow above the mixing zone is displaced by /23

the perturbing bodies in such a way that perturbing bodies with

the higher position numbers ( _ ) contribute an additional

loss in mechanical energy only to the extent as is required for

maintaining the strong boundary layers.

!

Therefore we can expect that the de_ailed in yestigation of

a group of four, discussed in the follow,ing , will also be repre-

sentative for larger numbers of perturbing bodies (Figure 6).

The drag coefficient of the individual perturbing bodies was

plotted in this representation over a common separation variable

for all disturbing bodies, so that the corresponding Cw-,values

lay, above one another in the ordinate direction.

The drag coefficient of the first perturbing body I (4)

is for the most part independent of the Ma number and the dis-

8



Figure 6. Drag coefficients of a group of four at ,_ic,_J,:_s
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Figure 7. Drag coefficients of the individual perturbation
bodies of a group of four.

tance ratio at,. Cw equals 2. It is only at x. h < 7 that the per-

turbation of the recirculation region leads to substantial devia-

tions. The drag of the following perturbing bodies Shows the

typical behavior already given in Figure 5.

If one considers the different abscissa units in the form

'iJ....])x.h xih _ then the internal perturbing bodies in the

configuration of II (4) and Iii (4) only show slight differences

in their behavior compared with the groups of two and three.

The flow field downstream of each perturbing body has no notice-

able influence on its drag as already established for the first

perturbing body.



The total drag of this group of four can be determined as

the sum of the individual drag values as a function of a common

distance variable x,h

4 \ Ii

, i

It results from _his that a system of four perzurblng bodies

will have a substantially reduced drag coefficient compared with

a single perturbing body having the same dimensions_ up to a dis-

tance ratio of x_ I_ E . For ×J,h 5 the drag reduction

is 40%. This means that if additional perturbing bodies of the

same kind are installed in the vicinity of a perturbing body_ the

total drag decreases. This means that additional internal stiff-

ening members of a flow wind tunnel or the division of an indivi-

dual reinforcement member into a number of smaller parts of the

same strength has a favorable effect on the drag and the flow

direction, if certain geometric conditions are maintained.

The influence of the Ma number on the drag coefficient of the

perturbing bodies _I Ill and 2_ in the group of four is shown

in Figure 5 for the distance ratios x,,,'h:_:8 and 20. The

incident Mach number was increased until the supersonic region

created above the perturbing bodies no longer allowed any increase.

The representation shows that the characteristic feature of the

drag behavior with increasing Mach number becomes more pronounced,

independent of whether there is a positive or negative drag co-

efficient. At x/h _ the drag coefficient of the second body

changes sJ_n_ because of increasing Mach number the mixing zone

moves toward the dead water condition and these perturbing bodies

then enter the region of the core flow m®re and more.

2. Momentum loss

Zn addition to measuring forces we also determine the change

in the total momentum flux by measuring the static pressure formed

behind the perturbing bodies and by ign®ring heat exchange. The

I0
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Figure 8. Change of the Mach number average value

losses .:.n the empty zes_ section, which amount to about 1/3 of

the total losses, were determined beforehand and were subtracted,

referred _o the inciden_ Mach number at noint (i).

Figure 6 shows that the momentum loss coefficient c,..,

is greater than the drag coefficient c,.... . This was to be ex-

pected according to the design _II.4, because in the region of

the perturbing bodies one has to expect considerably higher speeds

than the incident flow speed and therefore higher wall friction

losses _<.......\I<_.,,:: . In order to determine these fric-/24

tion losses, one has to know-the changed velocity field with respect

to measurements in the empty tunnel. This cannot be done without

a high amount of complexity. Therefore a comparison of the two

coefficients has to be restricted vo the statement that they are

for the most par_ similar. The momentum loss is a measure for the

total drag, in a somewhat weaker form because of the additional

friction losses. From the difference c.,,,,.--c,,of Figure 7 we

can obtain information about the magnitude of the ,velocity in-

creases which are produced by each perturbing body configuration.

Figure 8 for example shows by how much the loss Mach number Ma

must be increased when determining the channel losses of the empty

test section in order to arrive at the same drag coefficient.

This new Mach number .M_ can be interpreted as the Mach

number average between the measurement planes ahead of (i) and

far behind (2) of the perturbing bodies. It is a measure for the

length of the region of the test section in which there is a sub-

szantially higher speed.

This region is small for small perturbing body separation

!i



I_,)nl< _I) . It increases until the perturbing bodies and

the recirculation regions are immediately adjacent to one another

and therefore continuously displace the flow above the mixing

zone ( ×_tn_=:9). When the bodies move even closer together_ it is

divided because of partial reattachement of the boundary layer in

individual regions, in which the zones of relatively high speed

are relatively short.

i

V. Final Remarks

The investigations gave us an idea of the difficulties in

a detailed evaluation of this interestimg flow problem. Using

differeht perturbing body geometries and associations_ as other

tests not recorded here have shown, there is a possibility of

influencing the flow behavior even more. However we do not ex-

pect,reallysubs_antial quantitative changes in the statements

given here.

We may summarize_the drag behavior of rigidly attached per-

turbing bodies attached vo the wall l_isg in a _ow-a_ follows:

i. By suitably selecting _he separation_ _he individual

drag and the _o_al drag can be _aried ®ver wide limits.

In _he present case, for example, the drag coefficient

of the second body varies within the range _0_ S c,,_ 2

The variation range for four perturbing bodies was

_2 _ c,,_7 . The minimum w,as therefore 40% below

the cW - value of an individual perturbing body.

2. Accordingly _he loss in _echanical energy of a medium

for a given set of perturbing bodies can be _nf!uenced

over a wide range w_ith a suitable seiec_ion of the

distance ratios. The corresponding icss coefficient

for the four body configurations was between _,5_ c,,.'<7

The energy sa_ings compared with °the configuration

with only a single perturbing body was more than 25_

in spite of the higher wall friction ,iosses_

12
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